Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Autism ; 15(1): 15, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570867

RESUMO

BACKGROUND: Clinicians diagnosing autism rely on diagnostic criteria and instruments in combination with an implicit knowledge based on clinical expertise of the specific signs and presentations associated with the condition. This implicit knowledge influences how diagnostic criteria are interpreted, but it cannot be directly observed. Instead, insight into clinicians' understanding of autism can be gained by investigating their diagnostic certainty. Modest correlations between the certainty of an autism diagnosis and symptom load have been previously reported. Here, we investigated the associations of diagnostic certainty with specific items of the ADOS as well as other clinical features including head circumference. METHODS: Phenotypic data from the Simons Simplex Collection was used to investigate clinical correlates of diagnostic certainty in individuals diagnosed with Autistic Disorder (n = 1511, age 4 to 18 years). Participants were stratified by the ADOS module used to evaluate them. We investigated how diagnostic certainty was associated with total ADOS scores, age, and ADOS module. We calculated the odds-ratios of being diagnosed with the highest possible certainty given the presence or absence of different signs during the ADOS evaluation. Associations between diagnostic certainty and other cognitive and clinical variables were also assessed. RESULTS: In each ADOS module, some items showed a larger association with diagnostic certainty than others. Head circumference was significantly higher for individuals with the highest certainty rating across all three ADOS modules. In turn, head circumference was positively correlated with some of the ADOS items that were associated with diagnostic certainty, and was negatively correlated with verbal/nonverbal IQ ratio among those assessed with ADOS module 2. LIMITATIONS: The investigated cohort was heterogeneous, e.g. in terms of age, IQ, language level, and total ADOS score, which could impede the identification of associations that only exist in a subgroup of the population. The variability of the certainty ratings in the sample was low, limiting the power to identify potential associations with other variables. Additionally, the scoring of diagnostic certainty may vary between clinicians. CONCLUSION: Some ADOS items may better capture the signs that are most associated with clinicians' implicit knowledge of Autistic Disorder. If replicated in future studies, new diagnostic instruments with differentiated weighting of signs may be needed to better reflect this, possibly resulting in better specificity in standardized assessments.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Adolescente , Pré-Escolar , Transtorno Autístico/diagnóstico , Idioma , Transtorno do Espectro Autista/diagnóstico
2.
Transl Psychiatry ; 14(1): 95, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355713

RESUMO

Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Deleção Cromossômica , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA
3.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434504

RESUMO

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Esquizofrenia , Masculino , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Genômica
4.
Nat Hum Behav ; 7(6): 1001-1017, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36864136

RESUMO

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo/diagnóstico por imagem
5.
medRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865328

RESUMO

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

6.
Sci Rep ; 12(1): 9232, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654955

RESUMO

Response inhibition is a fundamental brain function that must be flexible enough to incorporate proactive goal-directed demands, along with reactive, automatic and well consolidated behaviors. However, whether proactive inhibitory processes can be explained by response competition, rather than by active top-down inhibitory control, remains still unclear. Using a modified version of the Eriksen flanker task, we examined the behavioral and electrophysiological correlates elicited by manipulating the degree of inhibitory control in a task that involved the fast amendment of errors. We observed that restraining or encouraging the correction of errors did not affect the behavioral and neural correlates associated to reactive inhibition. We rather found that an early, sustained and bilateral activation, of both the correct and the incorrect response, was required for an effective proactive inhibitory control. Selective unilateral patterns of response preparation were instead associated with defective response suppression. Our results provide behavioral and electrophysiological evidence of a simultaneous dual pre-activation of two motor commands, likely underlying a global operating mechanism suggesting competition or lateral inhibition to govern the amendment of errors. These findings are consistent with the response inhibitory processes already observed in speed-accuracy tradeoff studies, and hint at a decisive role of early response competition to determine the success of multiple-choice action selection.


Assuntos
Córtex Motor , Motivação , Córtex Motor/fisiologia , Inibição Proativa , Tempo de Reação/fisiologia , Inibição Reativa
7.
Biol Psychiatry ; 90(9): 596-610, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509290

RESUMO

Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
8.
Neuroimage Clin ; 32: 102799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469849

RESUMO

There is evidence that gray matter networks are disrupted in Mild Cognitive Impairment (MCI) and associated with cognitive impairment and faster disease progression. However, it remains unknown how these alterations are related to the presence of Apolipoprotein E isoform E4 (ApoE4), the most prominent genetic risk factor for late-onset Alzheimer's disease (AD). To investigate this topic at the individual level, we explore the impact of ApoE4 and the disease progression on the Single-Subject Gray Matter Networks (SSGMNets) using the graph theory approach. Our data sample comprised 200 MCI patients selected from the ADNI database, classified as non-Converters and Converters (will progress into AD). Each group included 50 ApoE4-positive ('Carriers', ApoE4 + ) and 50 ApoE4-negative ('non-Carriers', ApoE4-). The SSGMNets were estimated from structural MRIs at two-time points: baseline and conversion. We investigated whether altered network topological measures at baseline and their rate of change (RoC) between baseline and conversion time points were associated with ApoE4 and disease progression. We also explored the correlation of SSGMNets attributes with general cognition score (MMSE), memory (ADNI-MEM), and CSF-derived biomarkers of AD (Aß42, T-tau, and P-tau). Our results showed that ApoE4 and the disease progression modulated the global topological network properties independently but not in their RoC. MCI converters showed a lower clustering index in several regions associated with neurodegeneration in AD. The SSGMNets' topological organization was revealed to be able to predict cognitive and memory measures. The findings presented here suggest that SSGMNets could indeed be used to identify MCI ApoE4 Carriers with a high risk for AD progression.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Disfunção Cognitiva , Alelos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Substância Cinzenta/diagnóstico por imagem , Humanos
9.
Transl Psychiatry ; 11(1): 399, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285187

RESUMO

Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


Assuntos
Variações do Número de Cópias de DNA , Esquizofrenia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
10.
Autism Res ; 14(11): 2412-2423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288517

RESUMO

Despite the high prevalence of sensory processing difficulties in children with autism spectrum disorder (ASD), little research has focused on the sex differences in sensory processing. Furthermore, there is a lack of knowledge on the female-specific symptoms of ASD, contributing to later referral, diagnosis and intervention. In this study, we examined the sex differences in sensory processing symptoms in large cohorts of ASD children (N = 168; 26 females, 142 males) and typically developing (TD) children (N = 439; 209 females, 230 males). For this, we translated the sensory processing measure (SPM) and SPM - Preschool (SPM-P) Home Forms to French. The SPM/SPM-P are parent/caregiver questionnaires that assess typical behavioral responses to sensory stimuli. Overall, our results showed that the magnitude of the differences in sensory processing between males and females is larger in ASD children relative to TD children, with females showing more severe symptoms in Hearing, as well as Balance and Motion subscales. Additionally, linear discriminant analysis showed that the SPM/SPM-P are good at discriminating TD children from ASD, children with higher accuracy rates for females than for males. These findings are discussed in light of the heterogeneity of sensory processing difficulties present in ASD. Overall, our results suggest that there seem to be female-specific profiles in sensory processing difficulties in ASD. Implications of findings concerning sex differences in sensory processing and their potential for improving identification and diagnosis of ASD females are discussed. LAY SUMMARY: The present study examined sex differences in behavioral responses to sensory stimuli in children with autism spectrum disorder (ASD), and typically developing (TD) children. While there is a small trend for TD males to show more sensory processing atypicalities, female ASD children show significantly more atypical responses compared to their male counterparts. This has important implications for characterizing female autism profiles, and ultimately improving the chance for earlier detection, diagnosis and treatment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/complicações , Criança , Pré-Escolar , Cognição , Feminino , Humanos , Masculino , Percepção , Caracteres Sexuais
11.
Mol Autism ; 12(1): 35, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985558

RESUMO

BACKGROUND: Language delay is one of the major referral criteria for an autism evaluation. Once an autism spectrum diagnosis is established, the language prognosis is among the main parental concerns. Early language regression (ELR) is observed by 10-50% of parents but its relevance to late language level and socio-communicative ability is uncertain. This study aimed to establish the predictive value of ELR on the progression of language development and socio-communicative outcomes to guide clinicians in addressing parents' concerns at the time of diagnosis. METHODS: We used socio-communicative, language, and cognitive data of 2,047 autism spectrum participants from the Simons Simplex Collection, aged 4-18 years (mean = 9 years; SD = 3.6). Cox proportional hazard and logistic regression models were used to evaluate the effect of ELR on language milestones and the probability of using complex and flexible language, as defined by the choice of ADOS module at enrollment. Linear models were then used to evaluate the relationship of ELR and non-verbal IQ with socio-communicative and language levels. RESULTS: ELR is associated with earlier language milestones but delayed attainment of fluent, complex, and flexible language. However, this language outcome can be expected for almost all autistic children without intellectual disability at 18 years of age. It is mostly influenced by non-verbal IQ, not ELR. The language and socio-communicative level of participants with flexible language, as measured by the Vineland and ADOS socio-communicative subscales, was not affected by ELR. LIMITATIONS: This study is based on a relatively coarse measure of ultimate language level and relies on retrospective reporting of early language milestones and ELR. It does not prospectively document the age at which language catches up, the relationship between ELR and other behavioral areas of regression, nor the effects of intervention. CONCLUSIONS: For autistic individuals with ELR and a normal level of non-verbal intelligence, language development follows a "bayonet shape" trajectory: early first words followed by regression, a plateau with limited progress, and then language catch up.


Assuntos
Transtorno Autístico , Adolescente , Transtorno Autístico/diagnóstico , Criança , Pré-Escolar , Humanos , Desenvolvimento da Linguagem , Pais , Estudos Retrospectivos
12.
Mol Autism ; 12(1): 8, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546725

RESUMO

BACKGROUND: Sensory processing atypicalities are frequent in Autism Spectrum Disorder (ASD) and neurodevelopmental disorders (NDD). Different domains of sensory processing appear to be differentially altered in these disorders. In this study, we explored the sensory profile of two clinical cohorts, in comparison with a sample of typically developing children. METHODS: Behavioral responses to sensory stimuli were assessed using the Sensory Processing Measure (parent-report questionnaire). We included 121 ASD children, 17 carriers of the 16p11.2 deletion (Del 16p11.2) and 45 typically developing (TD) children. All participants were aged between 2 and 12 years. Additional measures included the Tactile Defensiveness and Discrimination Test-Revised, Wechsler Intelligence Scales and Autism Diagnostic Observation Schedule (ADOS-2). Statistical analyses included MANCOVA and regression analyses. RESULTS: ASD children score significantly higher on all SPM subscales compared to TD. Del16p11.2 also scored higher than TD on all subscales except for tactile and olfactory/taste processing, in which they score similarly to TD. When assessing sensory modulation patterns (hyper-, hypo-responsiveness and seeking), ASD did not significantly differ from del16p11.2. Both groups had significantly higher scores across all patterns than the TD group. There was no significant association between the SPM Touch subscale and the TDDT-R. LIMITATIONS: Sensory processing was assessed using a parent-report questionnaire. Even though it captures observable behavior, a questionnaire does not assess sensory processing in all its complexity. The sample size of the genetic cohort and the small subset of ASD children with TDDT-R data render some of our results exploratory. Divergence between SPM Touch and TDDT-R raises important questions about the nature of the process that is assessed. CONCLUSIONS: Touch and olfaction/taste seem to be particularly affected in ASD children compared to del16p11.2. These results indicate that parent report measures can provide a useful perspective on behavioral expression. Sensory phenotyping, when combined with neurobiological and psychophysical methods, might have the potential to provide a better understanding of the sensory processing in ASD and in other NDD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Individualidade , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Fenótipo , Percepção Gustatória , Percepção do Tato , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/etiologia , Transtorno Autístico/diagnóstico , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Cromossomos Humanos Par 16/genética , Cognição , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Mutação
13.
Am J Psychiatry ; 178(1): 87-98, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911998

RESUMO

OBJECTIVE: Deleterious copy number variants (CNVs) are identified in up to 20% of individuals with autism. However, levels of autism risk conferred by most rare CNVs remain unknown. The authors recently developed statistical models to estimate the effect size on IQ of all CNVs, including undocumented ones. In this study, the authors extended this model to autism susceptibility. METHODS: The authors identified CNVs in two autism populations (Simons Simplex Collection and MSSNG) and two unselected populations (IMAGEN and Saguenay Youth Study). Statistical models were used to test nine quantitative variables associated with genes encompassed in CNVs to explain their effects on IQ, autism susceptibility, and behavioral domains. RESULTS: The "probability of being loss-of-function intolerant" (pLI) best explains the effect of CNVs on IQ and autism risk. Deleting 1 point of pLI decreases IQ by 2.6 points in autism and unselected populations. The effect of duplications on IQ is threefold smaller. Autism susceptibility increases when deleting or duplicating any point of pLI. This is true for individuals with high or low IQ and after removing de novo and known recurrent neuropsychiatric CNVs. When CNV effects on IQ are accounted for, autism susceptibility remains mostly unchanged for duplications but decreases for deletions. Model estimates for autism risk overlap with previously published observations. Deletions and duplications differentially affect social communication, behavior, and phonological memory, whereas both equally affect motor skills. CONCLUSIONS: Autism risk conferred by duplications is less influenced by IQ compared with deletions. The model applied in this study, trained on CNVs encompassing >4,500 genes, suggests highly polygenic properties of gene dosage with respect to autism risk and IQ loss. These models will help to interpret CNVs identified in the clinic.


Assuntos
Transtorno Autístico/genética , Deleção de Genes , Duplicação Gênica/genética , Predisposição Genética para Doença/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA/genética , Feminino , Genoma/genética , Humanos , Inteligência/genética , Masculino , Fatores de Risco
14.
Neuroimage ; 203: 116155, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494251

RESUMO

Most of human genome is present in two copies (maternal and paternal). However, segments of the genome can be deleted or duplicated, and many of these genomic variations (known as Copy Number Variants) are associated with psychiatric disorders. 16p11.2 copy number variants (breakpoint 4-5) confer high risk for neurodevelopmental disorders and are associated with structural brain alterations of large effect-size. Methods used in previous studies were unable to investigate the onset of these alterations and whether they evolve with age. In this study, we aim at characterizing age-related effects of 16p11.2 copy number variants by analyzing a group with a broad age range including younger individuals. A large normative developmental dataset was used to accurately adjust for effects of age. We normalized volumes of segmented brain regions as well as volumes of each voxel defined by tensor-based morphometry. Results show that the total intracranial volumes, the global gray and white matter volumes are respectively higher and lower in deletion and duplication carriers compared to control subjects at 4.5 years of age. These differences remain stable through childhood, adolescence and adulthood until 23 years of age (range: 0.5 to 1.0 Z-score). Voxel-based results are consistent with previous findings in 16p11.2 copy number variant carriers, including increased volume in the calcarine cortex and insula in deletions, compared to controls, with an inverse effect in duplication carriers (1.0 Z-score). All large effect-size voxel-based differences are present at 4.5 years and seem to remain stable until the age of 23. Our results highlight the stability of a neuroimaging endophenotype over 2 decades during which neurodevelopmental symptoms evolve at a rapid pace.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Adulto Jovem
15.
Front Neurosci ; 13: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244595

RESUMO

There is much controversy about the optimal trade-off between blood-oxygen-level-dependent (BOLD) sensitivity and spatial precision in experiments on brain's topology properties using functional magnetic resonance imaging (fMRI). The sparse empirical evidence and regional specificity of these interactions pose a practical burden for the choice of imaging protocol parameters. Here, we test in a motor somatotopy experiment the impact of fMRI spatial resolution on differentiation between body part representations in cortex and subcortical structures. Motor somatotopy patterns were obtained in a block-design paradigm and visually cued movements of face, upper and lower limbs at 1.5, 2, and 3 mm spatial resolution. The degree of segregation of the body parts' spatial representations was estimated using a pattern component model. In cortical areas, we observed the same level of segregation between somatotopy maps across all three resolutions. In subcortical areas the degree of effective similarity between spatial representations was significantly impacted by the image resolution. The 1.5 mm 3D EPI and 3 mm 2D EPI protocols led to higher segregation between motor representations compared to the 2 mm 3D EPI protocol. This finding could not be attributed to differential BOLD sensitivity or delineation of functional areas alone and suggests a crucial role of the image encoding scheme - i.e., 2D vs. 3D EPI. Our study contributes to the field by providing empirical evidence about the impact of acquisition protocols for the delineation of somatotopic areas in cortical and sub-cortical brain regions.

16.
Biol Psychiatry ; 84(4): 253-264, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778275

RESUMO

BACKGROUND: 16p11.2 breakpoint 4 to 5 copy number variants (CNVs) increase the risk for developing autism spectrum disorder, schizophrenia, and language and cognitive impairment. In this multisite study, we aimed to quantify the effect of 16p11.2 CNVs on brain structure. METHODS: Using voxel- and surface-based brain morphometric methods, we analyzed structural magnetic resonance imaging collected at seven sites from 78 individuals with a deletion, 71 individuals with a duplication, and 212 individuals without a CNV. RESULTS: Beyond the 16p11.2-related mirror effect on global brain morphometry, we observe regional mirror differences in the insula (deletion > control > duplication). Other regions are preferentially affected by either the deletion or the duplication: the calcarine cortex and transverse temporal gyrus (deletion > control; Cohen's d > 1), the superior and middle temporal gyri (deletion < control; Cohen's d < -1), and the caudate and hippocampus (control > duplication; -0.5 > Cohen's d > -1). Measures of cognition, language, and social responsiveness and the presence of psychiatric diagnoses do not influence these results. CONCLUSIONS: The global and regional effects on brain morphometry due to 16p11.2 CNVs generalize across site, computational method, age, and sex. Effect sizes on neuroimaging and cognitive traits are comparable. Findings partially overlap with results of meta-analyses performed across psychiatric disorders. However, the lack of correlation between morphometric and clinical measures suggests that CNV-associated brain changes contribute to clinical manifestations but require additional factors for the development of the disorder. These findings highlight the power of genetic risk factors as a complement to studying groups defined by behavioral criteria.


Assuntos
Encéfalo/patologia , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Criança , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Idioma , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Adulto Jovem
17.
Biol Psychiatry ; 80(2): 129-139, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26742926

RESUMO

BACKGROUND: Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS: This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS: IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS: The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Disfunção Cognitiva , Variações do Número de Cópias de DNA/genética , Função Executiva/fisiologia , Deficiência Intelectual , Inteligência/genética , Idioma , Memória/fisiologia , Destreza Motora/fisiologia , Adolescente , Adulto , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Criança , Pré-Escolar , Transtornos Cromossômicos/diagnóstico por imagem , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
18.
Psychophysiology ; 52(12): 1577-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26332749

RESUMO

A basic function of the visual system is to estimate the location of objects. Among other sensory inputs, the coding of an object's position involves the integration of visual motion, such as that produced by other moving patterns in the scene. Psychophysical evidence has shown that motion signals can shift, in the direction of motion, both the perceived position and the directed action to a stationary object. The neural mechanisms that sustain this effect are generally assumed to be mediated by feedback circuits from the middle temporal area to the primary visual cortex. However, evidence from neural responses is lacking. We used measures of ERPs and Granger causality analysis-a tool to predict the causal connectivity of two brain responses-to unravel the circuit by which motion influences position coding. We found that the motion-induced hand shift is tightly related to a neural delay: Participants with larger shifts of the pointing location presented slower sensory processing, in terms of longer peak latencies of the primary visual evoked potentials. We further identified early neural activity in the vicinity of the extrastriate cortex as the cause of this delay, which likely reflects the early processing of motion signals in position coding. These results suggest the rapid transfer of visual motion through feedforward circuits as a putative neural substrate in charge of the motion-induced shift in reaching.


Assuntos
Potenciais Evocados Visuais/fisiologia , Percepção de Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
19.
Neuroimage ; 120: 254-65, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143205

RESUMO

A cortical visuomotor network, comprising the medial intraparietal sulcus (mIPS) and the dorsal premotor area (PMd), encodes the sensorimotor transformations required for the on-line control of reaching movements. How information is transmitted between these two regions and which pathways are involved, are less clear. Here, we use a multimodal approach combining repetitive transcranial magnetic stimulation (rTMS) and diffusion tensor imaging (DTI) to investigate whether structural connectivity in the 'reaching' circuit is associated to variations in the ability to control and update a movement. We induced a transient disruption of the neural processes underlying on-line motor adjustments by applying 1Hz rTMS over the mIPS. After the stimulation protocol, participants globally showed a reduction of the number of corrective trajectories during a reaching task that included unexpected visual perturbations. A voxel-based analysis revealed that participants exhibiting higher fractional anisotropy (FA) in the second branch of the superior longitudinal fasciculus (SLF II) suffered less rTMS-induced behavioral impact. These results indicate that the microstructural features of the white matter bundles within the parieto-frontal 'reaching' circuit play a prominent role when action reprogramming is interfered. Moreover, our study suggests that the structural alignment and cohesion of the white matter tracts might be used as a predictor to characterize the extent of motor impairments.


Assuntos
Cérebro/fisiologia , Imagem de Tensor de Difusão/métodos , Função Executiva/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Cérebro/anatomia & histologia , Feminino , Dedos , Humanos , Masculino , Vias Neurais/anatomia & histologia , Adulto Jovem
20.
Neuropsychologia ; 75: 458-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26151855

RESUMO

A long-standing debate in psychology and cognitive neuroscience concerns the way in which unattended information is processed and influences goal-directed behavior. Although selective attention allows us to filter out task-irrelevant information, there is a substantial number of unattended, yet relevant, events that must be evaluated in a flexible manner so that appropriate behaviors can succeed. Here we inspected the extent to which unattended conflicting visual information, which cannot be consciously identified, influences behavior and activates medial prefrontal cortex (mPFC) mechanisms of action-monitoring and regulation, traditionally associated with conscious control processes. To that end, we performed two experiments using a novel variant of the Eriksen flanker task in which spatial attention was manipulated, preventing the conscious identification of unattended visual events. The first behavioral experiment was conducted to validate the efficacy of the novel paradigm. In the second experiment, we evaluated electrophysiological correlates of mPFC activity (a frontocentral negative ERP component and medial-frontal theta oscillations) in response to attended and unattended conflicting events. The results of both experiments demonstrated that attended and unattended conflicting stimuli altered subjects' behavior in a similar fashion, i.e. slowing down their reaction times and increasing their error rates. Importantly, the results of the EEG experiment showed that unattended conflicting stimuli, similarly to attended conflicting stimuli, led to an increase in theta-related frontocentral ERP activity and medial-frontal theta power, irrespective of the degree of conscious representation of the sources of conflict. This study provides evidence that medial-frontal theta oscillations represent a neural mechanism through which the mPFC may suppress and regulate potentially inappropriate actions that are automatically triggered by conflicting environmental stimuli to which we are oblivious.


Assuntos
Atenção/fisiologia , Conflito Psicológico , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Percepção Espacial/fisiologia , Ritmo Teta , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...